Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1alpha and intracellular reactive oxygen species.

نویسندگان

  • Bernadette Ateghang
  • Maria Wartenberg
  • Max Gassmann
  • Heinrich Sauer
چکیده

Cardiomyogenesis in differentiating mouse embryonic stem (ES) cells is promoted by cardiotrophin-1 (CT-1), a member of the IL-6 interleukin superfamily that acts through the tall gp130 cytokine receptor. We show that prooxidants (menadione, hydrogen peroxide) as well as chemical (CoCl2) and physiological (1% O2) hypoxia increased CT-1 as well as HIF-1alpha protein and mRNA expression in embryoid bodies, indicating that CT-1 expression is regulated by reactive oxygen species (ROS) and hypoxia. Treatment with either prooxidants or chemical hypoxia increased gp130 phosphorylation and protein expression of NADPH oxidase subunits p22-phox, p47-phox, p67-phox, as well as Nox1 and Nox4 mRNA. Consequently, inhibition of NADPH oxidase activity by diphenylen iodonium chloride (DPI) and apocynin abolished prooxidant- and chemical hypoxia-induced upregulation of CT-1. Prooxidants and chemical hypoxia activated ERK1,2, JNK and p38 as well as PI3-kinase. The proxidant- and CoCl2-mediated upregulation of CT-1 was significantly inhibited in the presence of the ERK1,2 antagonist UO126, the JNK antagonist SP600125, the p38 antagonist SKF86002, the PI3-kinase antagonist LY294002, the Jak-2 antagonist AG490 as well as in the presence of free radical scavengers. Moreover, developing embryoid bodies derived from HIF-1alpha-/- ES cells lack cardiomyogenesis, and prooxidants as well as chemical hypoxia failed to upregulate CT-1 expression. Our results demonstrate that CT-1 expression in ES cells is regulated by ROS and HIF-1alpha and imply a crucial role of CT-1 in the survival and proliferation of ES-cell-derived cardiac cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of cardiotrophin - 1 expression in mouse embryonic stem cells by HIF - 1 and intracellular reactive oxygen species

Introduction The cytokine cardiotrophin-1 (CT-1) is a member of the IL-6 family of cytokines acting through the heterodimeric complex LIFR␤:gp130 that becomes tyrosine phosphorylated by Janus kinases (Jaks). The Jaks activate multiple downstream signalling pathways, which involve signal transducers and activators of transcription (STATs), MAPKs, PI3-kinase and NF-␬B (Freed et al., 2005; Pennica...

متن کامل

Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were en...

متن کامل

The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy.

Tumor hypoxia negatively regulates cell growth and causes a more malignant phenotype by increasing the expression of genes encoding angiogenic, metabolic and metastatic factors. Of clinical importance, insufficient tumor oxygenation affects the efficiency of chemotherapy and radiotherapy by poorly understood mechanisms. The hypoxia-inducible factor (HIF)-1 is a master transcriptional activator ...

متن کامل

Skeletal Muscle HIF-1α Expression Is Dependent on Muscle Fiber Type

Oxygen homeostasis is an essential regulation system for cell energy production and survival. The oxygen-sensitive subunit alpha of the hypoxia inducible factor-1 (HIF-1) complex is a key protein of this system. In this work, we analyzed mouse and rat HIF-1alpha protein and mRNA expression in parallel to energetic metabolism variations within skeletal muscle. Two physiological situations were s...

متن کامل

Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxia-dependent effect.

Recent reports emphasize the importance of mitochondria in white adipose tissue biology. In addition to their crucial role in energy homeostasis, mitochondria are the main site of reactive oxygen species generation. When moderately produced, they function as physiological signaling molecules. Thus, mitochondrial reactive oxygen species trigger hypoxia-dependent gene expression. Therefore the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 119 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2006